
AFRL-IF-RS-TR-2001-220
Final Technical Report
October 2001

^?%<i#
:^^

MIGRATING MATLAB TO ZPL

University of Washington

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. D515

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

20020117 019

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2001-220 has been reviewed and is approved for publication.

,JA
APPROVED:

JOSEPH A. CAROZZONI
Project Engineer

e*^. £?. (Jfc&rtG

FOR THE DIRECTOR:
JAMES A. COLLINS, Acting Chief
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

MIGRATING MATLAB TO ZPL

Lawrence Snyder

Contractor: University of Washington
Contract Number: F30602-97-1-0152
Effective Date of Contract: 1 January 1997
Contract Expiration Date: 31 December 1999
Program Code Number: D515
Short Title of Work: Migrating MATLAB to ZPL

Period of Work Covered: Jan 97 - Dec 99

Principal Investigator: Lawrence Synder
Phone: (206) 543-9265

AFRL Project Engineer: Joseph A. Carozzoni
Phone: (315)330-7796

Approved for public release; distribution unlimited

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Joseph A. Carozzoni AFRL/IFTB, 525 Brooks Road, Rome, NY
13441-4505.

REPORT DOCUMENTATION PAGE
Form Approved

OMBNo. 07040188

Public reporting burden lor this collection ol information is estimated to average 1 tour per response, including the time lor reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reuniting
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Senates, Directorate lor Intormatran

Operations and Reports. 1215 Jef lerson Davis Highway, Suite 1204. Arlington. VA 22202-1302, and 10 the Office of Management and Budget, Paperwork Reduction Project 10704-01881, Washington, DC 20503.

1. AGENCY USE ONLY (Leaveblank) 2. REPORT DATE

October 2001

3. REPORT TYPE AND DATES COVERED

Final Jan 97 Dec 99
4. TITLE AND SUBTITLE

MIGRATING MATLAB TO ZPL

6. AUTHOR(S)

Lawrence Snyder

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Washington
Grants and Contract Services
3935 University Way, NE
Seattle WA 98105-6613
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington VA 22203-1714

AFRL/IFTB
525 Brooks Road
Rome NY 13441-4505

5. FUNDING NUMBERS

G - F30602-97-1-0152
PE -62301E
PR -HPSW
TA -00
WU-03

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2001-220

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Joseph A. Carozzoni/IFTB/(315) 330-7796

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT {Maximum 200 wordsl

This report documents the task of migrating MATLAB programs to ZPL so that the computations can run on parallel
platforms and achieve significant performance improvements. It entails three tasks: Upgrade ZPL to support sparse
representations, provide an interface to a parallel scientific library, and provide a mechanism by which programmers can
know when their MATLAB programs have limited parallelism. The project achieved all three goals. The prototype was
fully implemented and made available over the Internet. In benchmark tests ZPL programs were shown to perform as well
as or better than programs written by experts using C and message passing. ZPL programs are fully portable running well
on any UNIX platform. Additionally, the language is convenient, automatically producing all concurrency, all communica-
tion and very aggressive scalar optimizations. This research produced two dozen technical papers and four PhD disserta-
tions.

14. SUBJECT TERMS

Data parallel programming, metacomputers, memory hierarchy simulator

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

16
16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL
Standard Form 29S (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHSIDI0R, Dtt 94

Migrating MATLAB to ZPL

Abstract
The task of migrating MATLAB programs to ZPL so that the computations can run on parallel platforms
Ld cWeveTiJnificam performance Improvements entails three tasks Upgrade ZPL to support sparse
representations, provide an interface to a parallel scientific library, and prov.de a mechanism by which
programmers can know when their MATLAB programs have limited parallelism. The Projectach^ved
mese three goals, although the original proposal's plan to solve the latter problem on the MATLAB side
was replaced by a more effective solution that solves it on the "ZPL side." The software is fully
implemented and available free of charge over the WWW. There is a small ZPL user community. In
benchmark tests ZPL programs are shown to perform as well as or better than program^£***£*£
using C and message passing. ZPL programs are fully portable running well on any UNIX platform. And
the language is convenient, automatically producing all concurrency, all communication and very
aggessive scalar optimizations. Additionally, a substantial amount of research was conducted mto paralel
languages, parallel compilation and compiler optimizations. This research produced two dozen technical

papers and four PhD dissertations.

GeSy MATLAB is a forgiving, powerful and slow (to execute) means of expressing scientific
computation Generally, ZPL is an exacting, powerful and fast means of expressing scientific
compu a ions The forgiving vs exacting and the slow vs fast tradeoffs are embodied in the differences
Sen an interpreted^ compiled language. The goal of this research.was to discover howto transition
from the forgiving to the exacting in order to replace the slow with the fast. That is, to have the

convenience and the speed too.

There are three fundamental challenges to converting MATLAB programs to ZPL programs The first is
the ability to execute the MATLAB language constructs efficiently. Since the effort began with ZPL
already performing most of the MATLAB operations faster, in parallel and with more ^^
MATLAB itself, the main challenge was MATLAB's support for sparse arrays. MATLAB was the first,
and when this project started the only, language supporting sparcity. Its sparse matrices were argely
tanspa'nuo L user, so the performance advantages were limited. The challenge of providing a language
Teve sparse array capability that was both parallel and high performance had never been achieved This
SSS^ico^lShed this goal, as explained below. The solution not ^f^^™ »*"*
Lays as a fundamental data type of ZPL, but the technology goes well beyond whai»va^*
MATLAB and is general enough to apply to any language, parallel or sequential. Thus, ZPL covers
MATLAB in the sense of running all of its abstractions fast and in parallel.

The second challenge is to provide a parallel interface to library routines, since most of MATLAB's value
comerfromt convenient interface to powerful scientific software. The problem in the parallel context s
haTparaS scientific software is an enormous research area in its own right. We interacted wtthitwo o he
most well known scientific software groups, Jack Dongarra's SCALapack gro^^e^n de Gemi >
PLAPACK group Though ZPL can interface to both, and we have worked out the details for both, we
Lve^tmonS our solution using PLAPACK. It is the work of a week for a SCALapack expert to

interface to that library.

The third challenge concerns the fact that the MATLAB language is a sequential language, but to run u L- -
enough for serious scientific computations, it must be run in parallel. Being sequential means that

whenever programmers are not using the scientific software, i.e. when the are programming directly in the
language, they are writing code that may or may not have efficient parallel execution. This problem was
described in depth in the proposal, and it was noted there that it couldn't be solved. That is, to solve it is
tantamount to claiming a "general purpose automatic parallelization" technology, which has been promised
by many researchers for decades and not achieved. We believe that general automatic parallelization is not
a realistic goal. So, the plan in the proposal was to create a programmer's aid that would identify those
places in the converted program that were not parallel. Since it became obvious early on when NSF failed
to provide the funding to match DARPA's that such an ambitious software project was not feasible, we
have developed an alternative as part of our best effort. We have developed an abstraction called ZPL's
WYSIWYG performance model [2], which enables programmers to have the information that an analyzer
would normally have. In a sense this solution is superior to the "programmer's aid" because the
information can be used both for creating ZPL from MATLAB as well as writing ZPL programs from
scratch. The latter would have been impossible without a "ZPL side" solution.

So, the technical goals of the project -- support MATLAB*s operations, support scientific libraries and
handle the sequential nature of MATLAB program text -- have been achieved. In addition there has been a
substantial addition to the capability of ZPL including,

• sparse regions
• Mscan
• problem space promotion
• advanced optimizations

These will be discussed below. Further, the project supported a dedicated cadre of users in applying ZPL
to scientific problems, and received considerable feedback regarding practical applications. At the
completion of this research, ZPL is a freely distributed parallel programming language capable of hosting
MATLAB programs and running them in parallel for dramatic speed improvements. Interestingly, some
MATLAB programmers have said that rather than converting, they'll take the opportunity to develop a new

program directly in ZPL.

The remainder of this report gives technical substance to the topics raised in the Overview.

Sparse Regions and Arrays
During the 1990s the state-of-the-art in parallel algorithms improved dramatically, going from the naive
"dense" solutions so common previously to solutions involving much more sophisticated data structures,
especially sparse arrays. Languages like Fortran 90/95 and High Performance Fortran require programmers
to implement sparse structures manually. This is not only very difficult work for programmers, but the
compiler is unable to determine what the program is actually doing, and so cannot perform sophisticated
optimizations. MATLAB sought to help the programmer by constructing a "black box" sparse array that
the programmer could declare but otherwise could not affect or be aware of how it was being used. ZPL
through this award has created the first language level abstraction for sparse arrays, implemented it, shown
how to compile it to run fast in parallel and demonstrated it on sparse benchmarks. This is a significant and
fundamental accomplishment.

The key insight required to introduce sparse arrays into ZPL is to recognize that dense arrays are defined
and transformed using dense regions [4]. Therefore, extending this notion to sparse arrays "only" requires
the invention of sparse regions. Regions are index sets, and a powerful new idea in ZPL. For the dense
index case, i.e. those common cases such as n x n arrays, regions are specified by giving their index range,

as in

region R= [l..n, l..n]

which specifies the n2 set of indices from (1,1) through (n,n). Though this looks like an array definition in
another language, it declares only the indices. The n x n arrays A, B and C could be declared from this

region by

var A, B, C : [R] double;

which specifies that each array has n2 elements and the elements are double precision floating point
numbers data.

The sparse case is considerably more complicated [10]. First, there is the representation, which in the dense
case requires only the lower and upper bounds, the stride and the starting position. In the sparse case a full
data structure must be created to keep track of each represented item in the sparse structure (known
commonly as a nonzero). Further, the structure must support all of the ZPL data traversals. This structure
requires significant memory and so its aggressive optimization is essential or the program will suffer
adverse cache affects. The other problem with sparse arrays is that the represented elements must be
specified. This is sometimes static, as with tridiagonal matrices. Most commonly, the nonzeroes are
known at the start of the computation and can either be computed at initialization time or read in from a
file. The most dynamic case is when the configuration of the nonzeroes changes incrementally as the
computation evolves. The current implementation handles the first two cases.

When measured on the NAS conjugate gradient benchmark, which has a programmer produced sparse data
structure, the ZPL compiler is amazing [11]. It is able to match both the footprint, i.e. the memory usage,
and the performance of a high quality parallel program. The source text for ZPL is trivial for the core
sparse matrix-vector multiplication, whereas it runs to pages for the hand-coded version because of all of
the communication.

The sparse array work is the core of Bradford L. Chamberlains dissertation research [10], and has recently
appeared at an international conference [11]. It is too recent to see whether this will be incorporated into
other programming languages, but it is sufficiently labor-saving from the programmer's point of view and
sufficiently effective at enabling compiler optimizations that it is likely to be included in other future
systems.

ZPL Release
Just six months after the start of the award the ZPL compiler was publicly released. Of course, most of the
development was supported on previous awards, but the present award assisted in the distribution and user
support, which was crucial to the feedback needed for the research. The free ZPL software, comprised of a
compiler, libraries and documentation, was and remains the only high level parallel programming language
that can claim performance, portability and convenience [8]. "Performance" in this claim means that the
compiler produces from the high level source, object code that runs as fast as a program written by an
experienced programmer in C with message passing, the present industry standard [9]. Recent comparisons
reveal that even experienced programmers cannot write code that runs as fast as ZPL, even for a sequential
computer. "Portability" means that ZPL runs well on any Unix/Linux platform, which includes
contemporary parallel machines as well as all sequential machines. It is a fundamental fact of computer
science (universality theorem) that any program can run on any computer, so the import of this remark is
the "runs well" claim. Expect a well-written ZPL program to run well on every platform. [A serious effort
was made to port ZPL to Microsoft's NT, but the effort eventually failed as the operating system is very
difficult to work with where performance is concerned.] "Convenience" means that the programs are
simple and clear. An example of one user's program required 2.5 pages to solve a multigrid combustion
computation in ZPL and 12.5 pages in C with MPI message passing - and the ZPL program ran more than
twice as fast!

ZPL's release has attracted a small, but dedicated set of users. These users have not only made the compiler
more robust by testing out its facilities, but they have provided the raw material for both the language
design and the performance studies.

Mscan
One of the most pioneering advancements in the present compiler is the creation of a high-level
programming abstraction for pipelining [6,7]. As is well known pipelining is one of the most powerful and

widely used forms of parallelism. However, no high-level parallel language supported it directly despite
the fact that certain classic scientific computations, like solvers, must use pipelining to achieve any

performance at all.

One serious limitation with introducing pipelining into an array language, say for wavefront computations,
is that it is contrary to array language semantics. To accumulate the rows of an array one might wish to

write, in ZPL style,

A := A + A@north

which seems like it should take the rows of array A and replace each with itself and the row above it,
leading to an accumulating sum. However, array language semantics require that the nght-hand side be
evaluated entirely before the assignment. To get the desired wavefront motion, ZPL introduces the prime
operator, so the correct alternative to the previous statement is

A := A + A'@north

which produces an accumulating sum and pipelines the result on parallel computers.

Though the prime operator is an example of applying commonly understood metaphors to achieve new
results it doesn\ quite solve the problem, because most scientific computation is more complicated than a
single statement. For that reason, the inscan keyword was introduced to allow pipelining across a range of
statements, (mscan takes its name from "mighty scan", the term used in Ton Ngo's thesis, where the idea
was invented [12].) The fundamental research to incorporate pipelining into ZPL and other languages was
the PhD dissertation of E Chris Lewis [13].

Advanced Optimizations
One of the fundamental rules that releasing the compiler to the public taught the ZPL team was that great
parallel performance is useless unless great scalar performance is also achieved. That is even it the
processors are working well together - and ZPL is outstanding at achieving that - the efficiency of the
computation on an individual processor is just as important if performance is to eclipse programmer-
produced code. For that reason the team has worked intensively at both parallel optimizations and
sequential optimizations. Most of this work is published, but an enumeration of it here is useful.

. Communication optimizations - the dissertation topic of Sung-Eun Choi [15] shows how ZPL can
optimize interprocessor communication to achieve better-than-message passmg performance [14] .A
key aspect of the approach is the Ironman communication abstraction. The bottom line result of this
dissertation is that well designed compilers are more effective that humans at inserting interprocessor
communication, raising the question "Why is message passing so popular?"

. Fusion and Contraction - scalar language compilers create temporaries to hold intermediate results,
but when an array language does it there is a significant impact on storage. Removing this problem
was an important goal of the project because the temporaries ruin cache performance, a keyadvantage
of parallel machines that should not be lost. The net result is that an aggressive compiler (ZPL) can
remove not only the temporaries introduced by the compiler but also those introduced by the

programmer [3, 13].

. Collective Communication Optimizations - Parallel computations require such things as global
sums known as "collective" operations. The communication patterns for these are quite different than
those for other operations, so it makes since to try optimizing them. This was the task °f Derrick
Wethersby's dissertation [16], which showed that combining and pipelining were powerful techniques
to reduce the wait times and overheads for communication in collective operations.

Other less grandiose optimizations have been incorporated in the compiler, though they have not lead to

dissertation research.

Problem Space Promotion
Part of the challenge in parallel language and compiler design is to determine how a problem should be
solved in parallel in the first place. Once this is known then the concepts can be incorporated into the
language and the compiler can be designed to produce the code. One technique is Problem Space
Promotion. The idea is that computations are usually solved in the "dimensionality" in which they are
represented, e.g. matrix multiplication is solved in 2-dimensions because matrices are 2-dimensional. But,
it is often possible'to specify what is to be computed by raising the dimensionality of the solution and
thereby avoid over-specifying how it is to be computed. Without over-specifying the compiler has more
latitude to create an efficient solution. So, matrix multiplication can be solved in 3-dimensions by thinking
of each operand array as being replicated n times (n is the common dimension), the corresponding elements
multiplied elementwise and then the dimensionality reduced by summing along the common dimension.
The result is a specification of matrix product with only computationally required dependencies given.
PSP opportunities arise repeatedly [5].

The idea of PSP computations seems clear, but with so much latitude, it is complicated for the compiler to
figure out how best to solve the promoted problem. The team took on as the goal to do as well as an expert
programmer, which amounts to avoiding the creation of higher dimensional intermediate arrays If this
happened it could often overflow memory, since for example, multiplying 1000x1000 arrays of doubles,
requires an intermediate array of 8GB. But, even when it doesnt overflow the memory, it will surely
overflow the cache, an equally bad outcome. The ZPL compiler generates code for "problem space
promoted" computations that achieves both efficient intermediate memory usage as well as high
performance [3].

What You See Is What You Get
The development of the WYSIWYG model of parallelism turned out to be critical to enabling MATLAB
programmers to know when their corresponding ZPL programs would have limited parallelism. But, the
original purpose of WYSIWYG [2], was to write good parallel programs from scratch. This is a pioneering
idea, and it works like this.

When programmers write in C or Fortran they believe they "know" what the generated code will look like.
In actuality, they are often surprised because aggressive compilers often transform source code
tremendously, but that's not the issue. The point is that programmers "know" because there is a standard
model of sequential computers (von Neumann) and the model tells them how efficiently their program will
run. (The compiler's transformations are improving on this, so their understanding is the worst-case
performance.) In the parallel world only ZPL has adopted a standard model, the CTA model. In the same
way that the von Neumann model tells Fortran programmers how their code will run, unless the compiler
will do better, the CTA tells ZPL programmers how well their program will run, unless the compiler can do
better. The CTA concentrates on those features like interprocessor communication and latency that are
peculiar to parallel computers, leaving the details of the scalar processor to the von Neumann model.

Though this appears to be an amazingly obvious requirement for parallel programming success, it is not a
property of any other parallel programming language. Further, it cannot be a property of any programming
approach based on message passing. To note how well it works, the project members took two standard
matrix multiplication problems and wrote them in ZPL. The programs were quite different, of course, but
using the WYSIWYG model, it was possible to do a back-of-the-envelop analysis of which program would
run faster. A MATLAB programmer would do this. Once completed, a series of experiments across a
series of parallel programs showed that the WYSIWYG performance prediction was, indeed, true [2]. As
always, the ability to correctly predict an outcome is the hallmark of quality science.

Summary
As a result of this award it is now possible to migrate programs from MATLAB to ZPL. If the programs
use the sparse features of MATLAB, then the sparse features of ZPL will be used. In addition to the basic

goals of the project, a large body of associated and related scientific research were also created. Four
graduate students wrote doctoral dissertations under its auspices. All of the features of this report are
implemented and are available free of charge to the community.1 A small cadre of programmers uses ZPL

routinely.

References

[1] G Alverson, W. Griswold, C. Lin and D. Notkin, Lawrence Snyder, "Abstractions for Portable,
Scalable Parallel Programming," IEEE Transactions on Parallel and Distributed Systems. 9(1):71-

86, 1998.

[2] Bradford L. Chamberlain, Sung-Eun Choi, E Christopher Lewis, Calvin Lin, Lawrence Snyder,
and W. Derrick Weathersby, "ZPL's WYSIWYG Performance Model," Proceedings of the IEEE
Workshop on High-Level Parallel Programming Models and Supportive Environment, August

1998.

[3] E Christopher Lewis, Calvin Lin and Lawrence Snyder, "The Implementation and Evaluation of
Fusion and Contraction in Array Languages," In Proceedings of the ACM SIGPLAN 98
Conference on Programming Language Design and Implementation (PLDI), August 1998

[4] Bradford L. Chamberlain, E Christopher Lewis, Calvin Lin and Lawrence Snyder, "Regions: An
Abstraction for Expressing Array Computation," Proceedings of the 1999 SIGPLAN/SIGAPL
International Conference on Array Programming Languages, pp. 41-49, August 1999.

[5] Bradford L. Chamberlain, E Christopher Lewis and Lawrence Snyder, "Probiert. Space Promotion
and Its Evaluation as a Technique for Efficient Parallel Computation," Proc. 13 International
Conference on Supercomputing, pp. 311-318, June 1999

[6] Bradford L. Chamberlain, E Christopher Lewis and Lawrence Snyder, "Array Language Support
for Wavefront and Pipelined Computations," Proc. Workshop on Languages and Compilers for
Parallel Computing, August 1999.

[7] E Christopher Lewis and Lawrence Snyder, "Pipelining Wavefront Computations: Experience and
Performance," Proc. 5'h IEEE International Workshop on High-Level Parallel Programming
Models and Supportive Environments, May 2000.

[8] Bradford L. Chamberlain, Sung-Eun Choi, E Christopher Lewis, Calvin Lin, Lawrence Snyder and
W. Derrick Weathersby, "ZPL: A Machine Independent Language for Parallel Computers, IEEE
Transactions on Software Engineering, March 2000.

[9] Bradford L. Chamberlain, Steven J. Deitt, and Lawrence Snyder. "A Comparative Study of the
NAS MG Benchmark across Parallel Languages and Architectures." Proceedings of the 2000
ACM/IEEE Supercomputing Conference on High Performance Networking and Computing

(SC2000), November 2000.

[10] Bradford L. Chamberlain, The Design and Implementation of a Parallel Programming Language,
PhD Dissertation, University of Washington, (to appear) 2001.

[11] Bradford L. Chamberlain and Lawrence Snyder. "Array Language Support for Parallel Sparse
Computation. To appear in Proc. 15th ACM International Conference on Supercomputing

(ICSV1), June 2001.

1 The software is huge and is not included with this report. See the ZPL Web site for a copy all project
materials: http://www.cs.washington.edu/research/zpl/

[12] Ton Anh Ngo, The Role of Performance Models in Parallel Programming and Lnaguages, PhD
Dissertation, University of Washington, 1997.

[13] E. Chris Lewis, Achieving Robust Performance in Parallel Programming Languages, PhD
Dissertation, Universrity of Washington, 2001

[14] Sung-Eun Choi and Lawrence Snyder, Quantifying the Effects of Communicaton Optimizations,
International Conference on Parallel Processing, pp. 218-222, August 1997.

[15] Sung-Eun Choi, Machine Independent Communication Optimizations, PhD Dissertation,
University of Washington, 1999

[16] W. Derrick Wethersby, Machine Independent Compiler Optimizations for Collective
Communication, PhD Dissertation, University of Washington, 1999

MISSION
OF

AFRL/INFORMA TION DIRECTORA TE (IF)

The advancement and application of Information Systems Science

and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems to

meet Air Force needs.

